Motivations for physical activity in youth with type 1 diabetes participating in the ActivPals project: a qualitative study

Abstract
Around two-thirds of 5–18 year olds fail to meet physical activity (PA) recommendations. Children with type 1 diabetes tend to be less active and more sedentary than non-diabetic peers. Research into motivations for PA in this population is lacking.

We aimed to investigate motivating factors for PA in youth with type 1 diabetes participating in a four-week PA intervention (ActivPals study) to inform the practice of health care professionals promoting PA.

Sixteen semi-structured interviews with participants plus a parent (n=32) were carried out between May and July 2016. Following completion of the ActivPals intervention, participants who agreed to interview were recruited to this study. Interviews were recorded, transcribed verbatim and analysed thematically.

Factors contributing to motivation to participate in PA are presented as six key themes and nine sub-themes. The six themes were: ‘motivators related to health’, ‘enjoyment’, ‘self-efficacy’, ‘family and friends participating’, ‘contribution of third parties’ and ‘good weather’.

It was concluded that enjoyment was key to participation in PA and could be increased by goal setting and the involvement of friends and family. Education and support to manage diabetes for PA are crucial in developing self-efficacy to enable sustained behaviour change and health care professionals play a key role in providing this support, as well as having the potential to be a motivating role model. Subjective improvement in blood glucose readings and psychological benefits were also acknowledged to provide motivation for further PA. These motivating factors should be applied in supporting children with type 1 diabetes to engage in PA. Copyright © 2017 John Wiley & Sons.

Key words
Type 1 diabetes; physical activity; motivations

Motivation
Type 1 diabetes is caused by autoimmune destruction of insulin producing beta cells in the pancreas. The resulting absolute insulin deficiency is treated by injecting exogenous insulin, aiming to maintain healthy blood glucose levels in the context of many other influencing factors, e.g. carbohydrate intake, illness, physical activity (PA), stress etc. Although evidence that PA improves glycaemic control (measured by HbA1c) is inconsistent,1-5 PA should still be considered a cornerstone of managing type 1 diabetes6,7 as it confers many other benefits in reducing cardiovascular risk.1,2,8,9 Furthermore, independent of PA levels, time spent in sedentary behaviours has been shown to be deleterious for child health10,11 with excessive sedentary time linked to increased cardiovascular risk even in adequately active individuals.4

It is recommended that all 5–18 year olds participate in 1 hour of moderate to vigorous physical activity (MVPA) daily and minimise prolonged periods of sedentary behaviour;12 however, around two-thirds of adolescents fail to meet this target.1 With accelerometer measurement, it is seen that children with type 1 diabetes achieve significantly less daily MVPA and spend more time in sedentary or light activities than their non-diabetic peers.1

Much work has focused on the barriers to PA in children with type 1 diabetes, the most prominent diabetes-specific barrier appearing to be fear of hypoglycaemia.1,2,6,13 Interestingly, this psychological barrier is not necessarily related to an increase in hypoglycaemic events with PA,2 but lack of understanding and difficulty with
managing blood glucose for exercise may contribute.1,2,8

While barriers must be minimised, engaging children with type 1 diabetes also needs a positive approach towards identifying and nurturing their motivations. In developing children’s independence to participate in PA, the theoretical importance of self-efficacy, enjoyment and peer support has been noted1,2 but research specifically into motivations for this population is lacking.2 Our aim was to investigate what motivates children with type 1 diabetes to be physically active, to assist the practice of health care professionals in supporting active lifestyles.

Methods
Sampling and recruitment
Participants were recruited from the ActivPals Pilot Study14 which aimed to explore the acceptability and feasibility of a four-week PA intervention for youth with type 1 diabetes. Following the ActivPals intervention, 16 participant and parent pairs gave informed consent to be interviewed for this qualitative study on motivations. Ethics approval was granted from NHS Greater Glasgow and Clyde Clinical Research and Development Board.

Interviews
Sixteen semi-structured interviews were carried out at participants’ homes, ranging in duration from 25–45 minutes (average 30 minutes). Participants were aware that the interviewer was a general practitioner with type 1 diabetes undertaking an MSc in Sports Medicine, and not directly involved with ActivPals.

Data handling and analysis
Interviews were recorded, transcribed verbatim and analysed using the six-stage iterative process of thematic analysis described by Braun and Clarke.15

Transcription by the interviewer allowed familiarisation with the data, and codes were then applied to data extracts in an inductive manner as recurring ideas, events or beliefs were identified.

Around 80 codes were initially identified which were broadly grouped. Codes were sorted into potential themes and sub-themes with multiple reviews of the whole data set. All data extracts were collated for each potential theme to ensure consistency within themes; this resulted in further amendments to produce six final themes and nine sub-themes presented in Table 1. Member checking was employed on two transcripts (12.5%) by the researcher managing the study who was familiar with the data collected and involved in reviewing every stage of theme generation.

Results
Seven male and nine female participants, plus a parent in each case, were interviewed; participants’ mean age was 11.6±2.5 years. Age at diagnosis ranged from 1–13 years (mean 7.8±4.0 years) while duration of diagnosis ranged from three months to 12 years (3.8±4.3 years). Seven participants were relatively newly diagnosed (≤ six months). Ten were treated with insulin injections, while six were pump users.

Themes and sub-themes were arranged to reflect a social-ecological model where intervention at multiple levels (individual, social and environmental) is needed to effect behaviour change.16

Key motivators for the individual were ‘Motivators related to health’, ‘Enjoyment’ and ‘Self-efficacy’.

Motivators related to health
Diabetes related. With an effort to increase PA levels over four weeks, around two-thirds of participants noticed some improvement in blood glucose levels, e.g. general lowering of readings or a flattening of post-meal spikes. Four participants observed that exercise could be used as a direct method of lowering an acutely high blood glucose.

‘...when he has really high glucose late evening, we have two options: either extra jag or go for a walk and of course now he says “ok let’s go for a walk”... after 15–20 minutes come back and sugar is fine,’ (Dad of P9).

All participants were aware of the potential for exercise to cause hypos but very few felt it had actually happened more frequently with increased PA levels.

General physical and psychological health. Many children were aware of the importance of exercise to be ‘healthy’ but were unable to further qualify this.

A few participants, including boys, made reference to the positive effects of exercise on weight management or

<table>
<thead>
<tr>
<th>Social-ecological model</th>
<th>Themes</th>
<th>Sub-themes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td>Motivators related to health</td>
<td>Diabetes related</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General physical and psychological health</td>
</tr>
<tr>
<td></td>
<td>Enjoyment</td>
<td>Goals and competition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Participation self-perpetuating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Individual preferences: ability, variety, teams</td>
</tr>
<tr>
<td></td>
<td>Self-efficacy</td>
<td>Increased awareness of physical activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-monitoring and self-motivating techniques and devices</td>
</tr>
<tr>
<td>Social</td>
<td>Family and friends participating</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Contribution of third parties</td>
<td>Professional advice and role model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peer support with type 1 diabetes</td>
</tr>
<tr>
<td>Environment</td>
<td>Good weather</td>
<td>–</td>
</tr>
</tbody>
</table>
appearance as a reason for participation, for example: ‘doesn’t make me fat’ (P16); ‘I’ll get a 6-pack when I’m older’ (P2); ‘losing weight’ (P3); ‘Grows muscles’ (P10).

At least half of our participants alluded to the psychological benefits of PA, with several feeling ‘happy’ or ‘amazing’ after exercise. Others noted benefits in stress management and concentration.

‘If you were angry during the day, it helps you to like run off things,’ (P12).

’[Exercise] clears my mind to help with studying,’ (P10).

Enjoyment

All but two participants made reference to enjoyment being part of their reason for doing activities. Sub-themes were related to ‘goals and competition’, participation in PA becoming ‘self-perpetuating’ and other ‘individual preferences’. Particularly for younger participants, enjoyment was felt to be important in sustaining an activity.

Goals and competition. Having goals and competition was motivating for the majority of our participants and related to feelings of achievement.

‘I liked walking because I met my goals,’ (P4).

Participation self-perpetuating. About half of our subjects alluded to participation becoming more enjoyable and self-perpetuating after experiencing positive effects.

‘The more you do it the more it’s fun… it makes me want to do more,’ (P7).

Self-efficacy

Some participants described a process of experimentation with carbohydrate intake for PA, and appeared to be developing confidence in their regimen which contributed to feelings of independence and control.

‘I’ve kind of got a little bit more control over what I’ve been doing. Sometimes I have hypos but then afterwards I kind of feel more like I can manage my blood sugars,’ (P8).

At the social level, key themes were ‘Family and friends participating’ and ‘Contribution of third parties’.

Family and friends participating

All participants found some benefit in family and/or friends being involved in the PA intervention. Verbal encouragement alone was motivating for some; however, most found active participation of a family member and spending time together valuable. Having company for activities was largely perceived to make them more fun and for some introduced competition, which contributed to enjoyment.

‘…because it’s funner with other people, like you can keep motivated, but you can also have a laugh while you’re doing it...,’ (P12).

‘Some of my friends have [a pedometer] so we’d have like competitions to see who could get the most.’ (P3).

Those whose friends were less active expressed that it could be motivating if they did more activity.

‘I think maybe if more of my friends did stuff then I’d be more inclined to do it… but they’re not really into it,’ (P10).

Contribution of third parties

Professional input and role model. It was evident that some parents and participants valued the input of a professional in providing PA advice and felt that this had more influence than parental input alone.

‘It was great to have someone independent than a parent because FM was really good at explaining all the different things she does… Whereas if one of us said something like that, you know, there’s a wall! So I thought that was brilliant,’ (Mum of P10).

It was acknowledged that an active individual giving PA advice provided a positive and motivating role model.

‘…telling me stuff that she did as well was kind of motivating to make you do it… like she’s training for a marathon and that makes me want to do it,’ (P7).

Peer support with type 1 diabetes.

There was mixed opinion on whether contact with peers with type 1 diabetes was useful to help with motivation for participation in PA. However, potential benefits of peer support were acknowledged, even from those who did not want it at the time. The main benefits recognised were understanding and reducing isolation, ‘so it’s not just me’, as well as being able to share experiences and learning, which may be beneficial for parents too.

There was only one motivating environmental factor identified: ‘Good weather’.

Good weather

Although bad weather has previously been identified as a barrier to PA, as the interviews were conducted in spring/summer, weather was more often cited as a motivating factor to be active outdoors, than a barrier.

‘You were going to play the Wii lots weren’t you? But it’s been not bad weather wise so he’s been outside more,’ (Dad of P6).

Discussion

Our age range encompasses an important transition period of parental to child self-management and a period when PA levels are seen to reduce significantly. Adolescence is a key time for targeting behaviour change and as longer duration of diabetes correlates with lower PA levels, adopting a more active lifestyle as early as possible will make PA habits more likely to track into adulthood. We have identified several motivating factors which supported increasing PA levels, and subsequently confidence in managing blood glucose for exercise improved.

In line with perceptions of parents and health care professionals, in our sample, enjoyment was seen as key to participation and sustaining activity. Individualised community-based PA interventions have been successful in increasing levels of MVPA in youth with type 1 diabetes, and our data would suggest that accounting for an individual’s ability, willingness to try new activities and preference for team or individual sports will foster enjoyment and encourage engagement.

Goal-based strategies have been recommended over competition-based ones which may be off-putting to those with lesser sporting ability or fitness. Nearly all of our
participants felt that having goals encouraged their participation, with most in favour of competition; however, we acknowledge that many of our participants were already relatively active.

Many social factors contributed to motivation in our study and, in agreement with other work, we found that having active friends was motivating to this population\(^7,18\) and made PA more enjoyable. This has implications at policy level in promoting PA to all youth.

Family support has been shown to contribute to improved glycaemic control, increased PA levels and improved self-efficacy.\(^{16,21,22}\) We found motivating elements of family involvement to include competition, increased enjoyment, and valued family time. However, parents’ knowledge of PA recommendations has been found to be limited, with a lack of recognition of the contribution of daily activities and a focus on structured exercise.\(^{17}\) Also, the importance of long-term regular PA for cardiovascular health aside from glycaemic control was notably only acknowledged in one of our interviews. There is therefore a need to involve parents and families in education around PA with type 1 diabetes.

Peer support is perceived by parents and professionals to be important in supporting PA behaviour change\(^{17}\) and having successful social models can improve self-efficacy.\(^{25}\) Although not all participants were keen to utilise peer support currently, it should be facilitated where appropriate.

It is clear from our data, and that of others, that professional input is highly valued by participants and parents\(^2\) particularly if the individual is a physically-active person. A study of UK adults with type 1 diabetes identified ‘advice and encouragement around managing diabetes for exercise’ as a key facilitator of PA.\(^8\) However, Macmillan et al. found that health care professionals did not consider themselves to be influential,\(^17\) and have reported feeling inadequately trained to deliver PA advice, thus tending to focus on other aspects of diabetes management.\(^2\) The current inconsistent evidence for improved HbA1c with exercise may be partially attributable to excessive carbohydrate consumption or over-aggressive insulin reductions to avoid hypoglycaemia resulting in periods of hyperglycaemia; therefore, educating children and families in how to manage their diabetes during PA will help to improve self-efficacy and enable sustained behaviour change\(^{23,24}\) while maximising benefits for glycaemic control. As has been proposed previously, there may be a role for specialist PA advisors in diabetes clinics\(^17\) to achieve this.

There is a trend for higher HbA1c levels in winter months in Scottish children and bad weather has frequently been implicated as a barrier to PA.\(^{8,17,18}\) It is encouraging to find that the converse appears to be true, and good weather can be motivating. The impact of this environmental factor must therefore be accepted, and patients given seasonally appropriate advice and appealing indoor alternatives, e.g. exercise DVDs or active console games, when the weather may limit motivation for outdoor activities.\(^{18}\)

This study was limited by recruitment from only one Glasgow based paediatric clinic. Around half of the participants had recently (≤ six months) been diagnosed or switched treatment between pump and injections, which is likely to have influenced their glycaemic control during the study period. Many children recruited were already participating in some PA and it is recognised that the study may have appealed more to active children. Due to our small sample size, it is not possible to comment on differences between boys and girls. It may also have been relevant to assess parental attitudes and PA levels as a potential influencing factor. While our sample may not be representative of other geographical areas or the least active children, the principles will be broadly applicable to youth with type 1 diabetes.

Acknowledgements

We would like to thank the participants and their families who gave up their time for the interviews and shared their views for research purposes.

Declaration of interests

There are no conflicts of interest declared.

References

Motivations for physical activity